Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters








Language
Year range
1.
Biomedical and Environmental Sciences ; (12): 578-591, 2019.
Article in English | WPRIM | ID: wpr-773368

ABSTRACT

OBJECTIVE@#We aimed to explore how fermented barley extracts with Lactobacillus plantarum dy-1 (LFBE) affected the browning in adipocytes and obese rats.@*METHODS@#In vitro, 3T3-L1 cells were induced by LFBE, raw barley extraction (RBE) and polyphenol compounds (PC) from LFBE to evaluate the adipocyte differentiation. In vivo, obese SD rats induced by high fat diet (HFD) were randomly divided into three groups treated with oral gavage: (a) normal control diet with distilled water, (b) HFD with distilled water, (c) HFD with 800 mg LFBE/kg body weight (bw).@*RESULTS@#In vitro, LFBE and the PC in the extraction significantly inhibited adipogenesis and potentiated browning of 3T3-L1 preadipocytes, rather than RBE. In vivo, we observed remarkable decreases in the body weight, serum lipid levels, white adipose tissue (WAT) weights and cell sizes of brown adipose tissues (BAT) in the LFBE group after 10 weeks. LFBE group could gain more mass of interscapular BAT (IBAT) and promote the dehydrogenase activity in the mitochondria. And LFBE may potentiate process of the IBAT thermogenesis and epididymis adipose tissue (EAT) browning via activating the uncoupling protein 1 (UCP1)-dependent mechanism to suppress the obesity.@*CONCLUSION@#These results demonstrated that LFBE decreased obesity partly by increasing the BAT mass and the energy expenditure by activating BAT thermogenesis and WAT browning in a UCP1-dependent mechanism.


Subject(s)
Animals , Male , Mice , Rats , 3T3 Cells , Adipocytes , Physiology , Adipose Tissue, Brown , Physiology , Adipose Tissue, White , Physiology , Animal Feed , Anti-Obesity Agents , Metabolism , Cell Differentiation , Diet , Fermentation , Hordeum , Chemistry , Lactobacillus plantarum , Chemistry , Obesity , Drug Therapy , Genetics , Plant Extracts , Chemistry , Probiotics , Metabolism , Random Allocation , Rats, Sprague-Dawley , Uncoupling Protein 1 , Genetics , Metabolism
2.
Biomedical and Environmental Sciences ; (12): 667-676, 2018.
Article in English | WPRIM | ID: wpr-690604

ABSTRACT

<p><b>OBJECTIVE</b>To investigate the effect of fermented barley extracts with Lactobacillus plantarum dy-1 (LFBE) for modulating glucose consumption in HepG2 cells via miR-212 regulation.</p><p><b>METHODS</b>Hepatocellular carcinoma (HepG2) cells were treated with palmitate. After 12 h, palmitate-induced HepG2 cells were treated with LFBE and its main components. Changes in glucose consumption, proinflammatory cytokine secretion, and miRNA-212 expression in HepG2 cells was observed.</p><p><b>RESULTS</b>Treatment with LFBE rich in vanillic acid (VA) increased glucose consumption and reduced proinflammatory cytokine secretion in HepG2 cells. LFBE and VA normalized the upregulation of miR-212, which led to the upregulation of dual-specificity phosphatase-9 (DUSP9), a direct target of miR-212, at both protein and mRNA levels. Downregulation of miR-212 markedly increased glucose consumption and reduced proinflammatory cytokine secretion by enhancing DUSP9 expression.</p><p><b>CONCLUSION</b>The results showed the benefit of LFBE and miR-212 downregulation in modulating glucose consumption and reducing proinflammatory cytokine secretion by targeting DUSP9. VA in LFBE was a strong regulator of palmitate-induced abnormal glucose consumption in HepG2 cells and can be a primary mediator.</p>

3.
Biomedical and Environmental Sciences ; (12): 10-21, 2017.
Article in English | WPRIM | ID: wpr-296520

ABSTRACT

<p><b>OBJECTIVE</b>A subcutaneous transplantation tumor model of human HT-29 cells was established in nude mice to study the anticarcinogenic activities and apoptosis-regulatory mechanistic effect of aqueous extract of fermented barley with Lactobacillus plantarum dy-1 (LFBE).</p><p><b>METHODS</b>HT-29 cells were transplanted via subcutaneous injection of 1 × 107cells into the right flank of each nude mouse. Then, nude mice were treated for 30 days with LFBE (high-dose 2 g·kg-1·d-1; low-dose 1 g·kg-1·d-1) and for 7 days with 5-fluorouracil (5-FU, 25 g·kg-1·d-1) by gavage and intraperitoneal injection, respectively.</p><p><b>RESULTS</b>Tumor volume and weight decreased significantly in both groups of nude mice treated with LFBE. In addition, the cell apoptosis rate of the LFBE group was significantly higher than that of the control group and 5-FU groups as measured by the TUNEL assay. Moreover, the real-time fluorescent quantitative PCR and Western blot methods further confirmed these apoptosis-enhancing and growth-inhibiting effects. The involvement of LFBE in inducing apoptosis was confirmed by the expression of Bax, Bcl-2, caspase-3, and cyclinD1.</p><p><b>CONCLUSION</b>The results showed that LFBE could induce subcutaneous transplantation tumor apoptosis in nude mice and could be used as a natural nutrient supplement or chemopreventive agent in the treatment of human colon cancer.</p>


Subject(s)
Animals , Female , Humans , Apoptosis , Caspase 3 , Metabolism , Cell Proliferation , Cyclin D1 , Metabolism , Fermentation , HT29 Cells , Hordeum , Chemistry , Lactobacillus plantarum , Mice, Nude , Neoplasm Transplantation , Neoplasms, Experimental , Drug Therapy , Metabolism , Phytotherapy , Plant Extracts , Pharmacology , Therapeutic Uses , Xenograft Model Antitumor Assays , bcl-2-Associated X Protein , Metabolism
SELECTION OF CITATIONS
SEARCH DETAIL